

Manuel utilisateur – Partie C.1 – Notice technique du module FONDSUP

Date	Révision Etabli par		Commentaires
06/07/2020	Ind A	F. Cuira	Première émission

Table des matières

1.	Pr	réambu	le	4
2.	No	otation	s et conventions	5
3.	Ca	apacité	portante d'une fondation superficielle	6
	3.1.	Forr	nalisme de vérification	6
	3.	1.1.	Expression générale	6
	3.	1.2.	Facteur partiel combiné F _s	7
	3.	1.3.	Aire d'assise effective A'	7
	3.2.	Esti	mation de q _{net} à partir du pressiomètre (PMT)	8
	3.	2.1.	Expression générale	8
	3.	2.2.	Pression limite nette équivalente.	8
	3.	2.3.	Facteur de portance pressiométrique k _p	9
	3.	2.4.	Prise en compte de l'inclinaison du chargement i_δ	10
	3.	2.5.	Prise en compte de la proximité d'un talus	11
	3.3.	Esti	mation de q _{net} à partir du pénétromètre statique (CPT)	12
	3.	3.1.	Expression générale	12
	3.	3.2.	Résistance de cône équivalente q _{ce}	12
	3.	3.3.	Facteur de portance pénétrométrique k _c	13
	3.	3.4.	Prise en compte de l'inclinaison du chargement i_δ	14
	3.	3.5.	Prise en compte de la proximité d'un talus	14
	3.4.	Esti	mation de la contrainte de rupture à partir des propriétés de cisaillement du terrain	14
	3.	4.1.	Calcul en conditions non drainées (contraintes totales)	14
	3.	4.2.	Calcul en conditions drainées (contraintes effectives)	15
	3.	4.3.	Prise en compte de la proximité d'un talus	15
4.	Co	ontrôle	de l'excentrement	16
5.	St	abilité	au glissement	16
	5.1.	Forr	nalisme de vérification	16
	5.2.	Cas	d'un contact adhérant	16
	5.3.	Cas	d'un contact frottant	17
	5.4.	Fact	eur partiel combiné F _{s,h}	17
6.	Es	timatic	on des tassements	17
	6.1.	A pa	rtir d'un modèle pressiométrique (PMT)	17
	6.2.	A pa	rtir d'un modèle pénétrométrique (CPT)	19
	6.3.	A pa	rtir d'un modèle élastique (solutions analytiques)	21
7.	Es	timatic	on des raideurs équivalentes	22

7.1.	Prir	ncipe	22
7.2.	Cal	cul de la raideur verticale	23
7.2	2.1.	A partir du modèle pressiométrique (PMT)	23
7.2	2.2.	A partir du modèle pénétrométrique (CPT)	23
7.2	2.3.	A partir des propriétés de cisaillement (modèle élastique)	23
7.3.	Esti	imation des raideurs horizontales et rotationnelles	23
7.4.	Esti	mations complémentaires	24
8. Vé	rificat	ion additionnelle de la portance sismique d'une fondation selon l'EC8-5	24
8.1.	For	mulation	24
22	Cho	nix de l'accélération nominale au	26

1. Préambule

Le module FONDSUP est destiné à la justification géotechnique d'une fondation superficielle rigide selon la norme d'application de l'Eurocode 7 pour les fondations superficielles NF P 94 261. Il permet également une vérification selon les anciennes règles du Fascicule 62 - Titre V (conservées uniquement à titre indicatif).

Le concept de fondation superficielle tel que défini dans la norme NF P 94 261 s'applique aux massifs de fondation dont la base est située à une profondeur D inférieure ou égale à 2,5 fois la largeur d'assise B. Pour D > 2,5 B, il convient d'appliquer des modèles adaptés :

- aux fondations semi-profondes pour 2,5B < D < 5,0 B (cf. module SEMIPROF);
- aux fondations profondes pour D > 5B (cf. modules FONDPROF, TASPIE et PIECOEF).

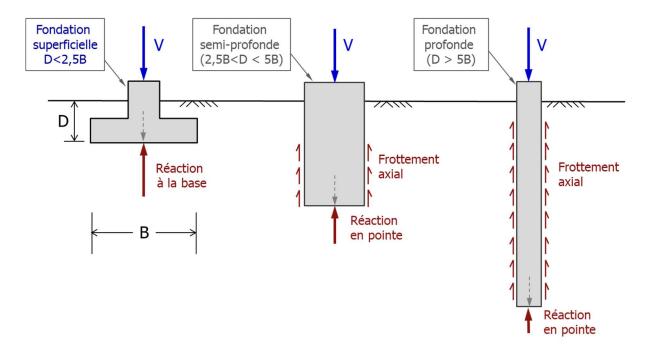


Figure 1 : Domaine conventionnel d'application du concept de fondation superficielle

Les calculs réalisés à l'aide du module FONDSUP permettent de couvrir les vérifications suivantes :

- Capacité portante combinée (tenant compte des effets d'excentrement et d'inclinaison) ;
- Contrôle de la surface comprimée (par limitation de l'excentrement) ;
- Glissement plan;
- Tassements et raideurs équivalentes ;
- Vérification additionnelle de la portance sismique (en lien avec l'Eurocode 8 Partie V).

Les vérifications peuvent être menées pour une fondation rectangulaire, filante ou circulaire. Le comportement du terrain peut être caractérisé à partir d'essais in situ (pressiomètre de Ménard, ou pénétromètre statique CPT) ou laboratoire (propriétés de cisaillement).

Le module FONDSUP permet par ailleurs le traitement simultané d'un grand nombre de cas de charges.

Enfin, les concepts théoriques et empiriques utilisés par le module FONDSUP s'appliquent au cas d'une fondation superficielle infiniment rigide. Le cas d'un radier ou d'un dallage doit en toute rigueur faire l'objet d'un traitement préalable à l'aide du module TASPLAQ.

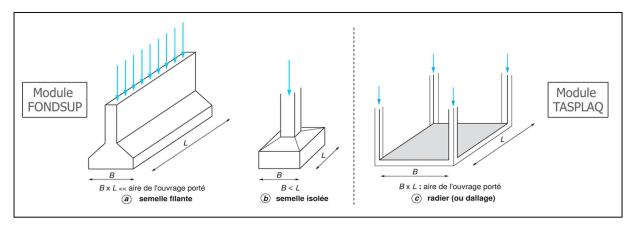


Figure 2: Domaine d'utilisation du module FONDSUP par différence avec celui de TASPLAQ

2. Notations et conventions

On utilise les notations suivantes :

- Z₀ cote du point d'application de la descente de charge (Figure 3)
- $Z_{TN,0}$ cote du terrain naturel (avant travaux)
- Z_{TN} cote du terrain naturel (après travaux)
- Z_{base} cote de la base de la fondation
- γ_{moy} poids volumique moyen des terrains situés au-dessus de la base de fondation
- D profondeur de la base de la semelle (après travaux) = Z_{TN} Z_{base}
- B diamètre ou largeur (plus petite dimension) d'assise de la fondation
- L longueur de la fondation (plus grande dimension)
- A aire d'assise de la fondation :
 - $A = B \times 1$ pour une fondation filante
 - $A = B^2$ pour une fondation carrée
 - $A = B \times L$ pour une fondation rectangulaire
 - $A = \pi \times B^2/4$ pour une fondation circulaire
- V_d Valeur de calcul de l'effort vertical appliqué sur la fondation
- $H_{B,d}$ Valeur de calcul de l'effort horizontal selon B
- H_{L,d} Valeur de calcul de l'effort horizontal selon L
- M_{B,d} Valeur de calcul du moment de renversement selon B (autour de L)
- M_{L,d} Valeur de calcul du moment de renversement selon L (autour de B)

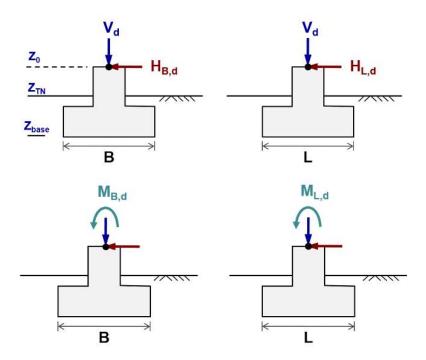


Figure 3 : Conventions de signe dans FONDSUP - Point d'application des charges

3. Capacité portante d'une fondation superficielle

3.1. Formalisme de vérification

3.1.1. Expression générale

La capacité portance d'une fondation superficielle est vérifiée selon l'inégalité suivante (NF P 94 261) :

$$V_d - R_0 \le R_{vd}$$

0ù:

- V_d : valeur de calcul de l'effort <u>vertical</u> à reprendre par la fondation;

- R_0 : poids des terres initial à la base de la fondation (après travaux);

- R_{v.d}: valeur de calcul de la résistance nette du terrain.

Les valeurs de R_0 et $R_{v,d}$ s'obtiennent comme suit :

$$R_0 = A. q_0 \qquad \qquad R_{v,d} = A' \frac{q_{net}}{F_s}$$

0ù:

- F_s facteur partiel « combiné » = $\gamma_{R,d}$. $\gamma_{R,v}$ (voir §3.1.2).

- A' aire d'assise effective de la fondation (voir §3.1.3);

- q_0 poids des terres initial à la base de la fondation (après travaux) = $(Z_{TN} - Z_{base})\gamma_{moy}$;

- q_{net} contrainte de rupture du terrain (voir §3.2, §3.3 et §3.4);

3.1.2. Facteur partiel combiné F_s

Le facteur partiel combiné F_s dépend de la combinaison de chargement étudiée et du modèle de calcul utilisé pour l'estimation de la contrainte de rupture du terrain q_{net} . Le tableau suivant présente les valeurs de F_s applicables dans chaque cas (NF P 94-261).

Tableau 1 : Valeurs utilisées dans FONDSUP pour le facteur partiel combiné

Modèle	ELS	ELU FOND	ELU ACC	ELU SISM
Empirique (essais in-situ PMT ou CPT)	2,76	1,68	1,44	1,68
Analytique non drainé $(c_u \neq 0, \phi_u = 0)$	2,76	1,68	1,44	1,68
Analytique drainé (c', φ')	4,60	2,80	2,40	2,80

3.1.3. Aire d'assise effective A'

Sous un chargement centré, l'aire d'assise effective est prise égale à l'aire d'assise totale (A' = A).

Pour une fondation rectangulaire, sous un chargement excentré (de e_B dans la direction de B et de e_L dans la direction de L), on applique le modèle de Meyerhof qui suppose une réaction du sol uniforme sous une partie rectangulaire de la fondation, de largeur $B' = B - 2.e_B$ et de longueur $L' = L - 2.e_L$.

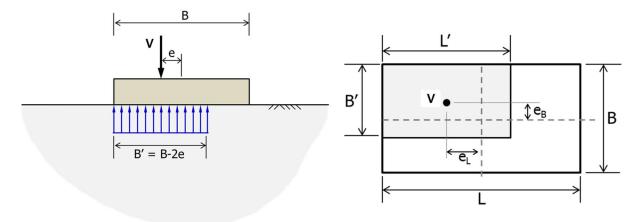


Figure 4 : Définition de l'aire d'assise effective pour une fondation rectangulaire

On définit donc l'aire d'assise effective :

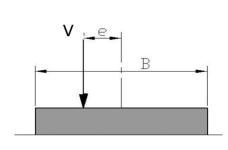
$$A' = (B - 2e_B).(L - 2e_L)$$

Avec, dans FONDSUP:

$$e_B = \frac{M_{B,d} + H_{B,d} \Delta z}{V_d} \quad \text{et} \quad e_L = \frac{M_{L,d} + H_{L,d} \Delta z}{V_d} \qquad \quad \Delta z = Z_0 - Z_{base}$$

Il est à remarquer que pour $Z_0 > Z_{base}$ (descente de charge exprimée en tête de la semelle par exemple), les efforts horizontaux génèrent un moment additionnel (par rapport à la base de la semelle) qui participe à l'excentrement (apparent) des charges.

Le cas d'une fondation circulaire de diamètre B, soumise à une charge verticale V_d présentant un excentrement e par rapport à l'axe, est traité de façon similaire, en se ramenant à une fondation rectangulaire fictive de largeur B' et de longueur L', centrée sur V_d , et sous laquelle la réaction du sol est supposée uniforme.


Cela conduit à l'expression suivante¹:

$$A' = \frac{B^2}{2} \left[a\cos\left(\frac{2e}{B}\right) - \frac{2e}{B} \sqrt{1 - \left(\frac{2e}{B}\right)^2} \right]$$

Avec, dans FONDSUP:

$$e = \frac{M_{B,d} + H_{B,d} \Delta z}{V_d}$$

$$\Delta z = Z_0 - Z_{base}$$

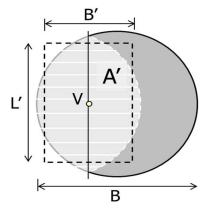


Figure 5 : Définition de l'aire d'assise effective pour une fondation circulaire

3.2. Estimation de q_{net} à partir du pressiomètre (PMT)

3.2.1. Expression générale

Dans le cadre d'un dimensionnement à partir du pressiomètre de Ménard (PMT), la contrainte de rupture du terrain q_{net} s'exprime comme suit :

$$q_{net} = k_p p_{le}^* i_{\delta} i_{\delta}$$

0ù:

- p_{le} pression limite nette équivalente (voir §3.2.2);
- k_p facteur de portance pressiométrique (voir §3.2.3);
- i_{δ} coefficient réducteur lié à l'inclinaison des charges (voir §3.2.4);
- i_ß coefficient réducteur lié à la proximité d'un talus (voir §3.2.5).

3.2.2. Pression limite nette équivalente

La pression limite nette équivalente est calculée comme la moyenne géométrique des pressions limites nettes mesurées jusqu'à une profondeur H_r sous la base de la fondation :

¹ NF P 94 261 – Annexe Q

$$log(p_{le}^*) = \frac{1}{H_r} \int_D^{D+H_r} log\big(p_l^*(z)\big) \, dz$$

La hauteur d'intégration H_r dépend de la combinaison de chargement et est prise égale à :

- $H_r = 1,50 B$ à l'ELS (permanent et caractéristique);

- $H_r = min(1,50 \text{ B}, H_{eff})$ à l'ELU (fondamental, sismique et accidentel).

Avec H_{eff} fonction des excentricités du chargement e_B et e_L :

Fondation filante

$$H_{eff} = 3B - 6e_{B}$$

Fondation circulaire

$$H_{eff} = \frac{8B - 16e_B}{3}$$

Fondation rectangulaire

$$H_{eff} = min(3B - 6e_B; 3B - 6e_L)$$

3.2.3. Facteur de portance pressiométrique kp

Le facteur de portance pressiométrique s'exprime selon la formule

$$k_{p} = k_{p}^{1} \left(1 - \frac{B}{L} \right) + k_{p}^{2} \frac{B}{L}$$

Avec k_p^1 et k_p^2 respectivement les facteurs de portance pour semelle filante et carrée dont les valeurs s'obtiennent analytiquement à l'aide de relation :

$$k_p^{1 \text{ ou 2}} = k_{p0} + \left[a + b\frac{D_e}{B}\right] \cdot \left[1 - exp\left(-c\frac{D_e}{B}\right)\right]$$

Les valeurs de k_{p0} , a, b et c sont précisées dans le tableau suivant. La valeur de k_p est plafonnée à partir de $D_e/B=2,0$.

		a	b	С	k _{p0}
Argiles et limons	Semelle filante	0,20	0,02	1,3	0,8
Argiles et ill'ioris	Semelle carrée	0,30	0,02	1,5	0,8
Sables et graves	Semelle filante	0,30	0,05	2,0	1,0
	Semelle carrée	0,22	0,18	5,0	1,0
Craies	Semelle filante	0,28	0,22	2,8	0,8
Crales	Semelle carrée	0,35	0,31	3,0	0,8
Marnes et marno-	Semelle filante	0,20	0,20	3,0	0,8
calcaires Roches altérées	Semelle carrée	0,20	0,30	3,0	0,8

Figure 6 : Paramètres numériques pour le calcul du facteur de portance pressiométrique

Le calcul du facteur de portance pressiométrique k_p nécessite d'évaluer au préalable la profondeur d'encastrement équivalente de la fondation D_e calculée à l'aide de la relation :

$$D_{e} = Min\left(D; \frac{1}{p_{le}^{*}} \int_{0}^{D} p_{l}^{*}(z) dz\right)$$

Avec p_{le}^* calculée ici pour $H_r = 1,5$ B.

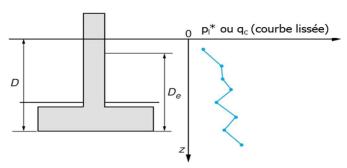


Figure 7 : Notion de profondeur d'encastrement équivalente

3.2.4. Prise en compte de l'inclinaison du chargement is

La valeur de i_δ dépend du caractère frottant/cohérent du sol de fondation ainsi que de l'inclinaison des charges par rapport à la verticale :

$$\delta = \frac{H_{B,d}}{|H_{B,d}|} atan \left(\frac{H_d}{V_d}\right) \ avec \ H_d = \sqrt{H_{B,d}^2 + H_{L,d}^2}$$

On distingue trois situations (NF P 94 261):

- Cas d'un terrain de comportement parfaitement cohérent ($\phi = 0$):

$$i_{\delta} = \Phi_1(\delta) = \left(1 - \frac{2\delta}{\pi}\right)^2$$

- Cas d'un terrain de comportement parfaitement frottant (c = 0):

$$i_{\delta} = \Phi_{2}(\delta) = \begin{cases} \Phi_{1}(\delta) - \frac{4\delta}{\pi} \left(1 - \frac{3\delta}{\pi}\right) \exp\left(-\frac{D_{e}}{B}\right) & \delta \leq \frac{\pi}{4} \\ \Phi_{1}(\delta) \left(1 - \exp\left(-\frac{D_{e}}{B}\right)\right) & \delta \geq \frac{\pi}{4} \end{cases}$$

- Cas d'un terrain de comportement intermédiaire ($c \neq 0$ et $\phi \neq 0$):

$$i_{\delta} = \Phi_2(\delta) + (\Phi_1(\delta) - \Phi_2(\delta)) \left(1 - \exp\left(-\frac{0.6c}{\gamma B \tan \phi}\right)\right)$$

Avec γ le poids volumique moyen du terrain sous la fondation (dans la zone d'influence de la fondation, soit jusqu'à H_r pour le problème de portance).

Nota : le choix d'un facteur réducteur pour terrain cohérent suppose implicitement la pérennité de la cohésion du terrain pour les combinaisons de chargement étudiées. Cette hypothèse est donc essentiellement destinée à la justification des ouvrages pour des situations de calculs transitoires.

3.2.5. Prise en compte de la proximité d'un talus

3.2.5.1. Cas d'un chargement vertical

Le cas d'une fondation chargée verticalement à proximité d'un talus est traité en appliquant un coefficient réducteur i_{β} dont la valeur dépend du caractère frottant/cohérent du terrain, de la distance « d » entre le bord de la fondation et le talus, ainsi que de la pente « β » de celui-ci.

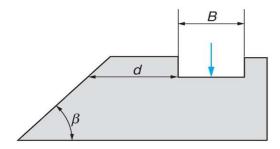


Figure 8 : Présence d'un talus à proximité de la semelle - notations

Les formules appliquées sont les suivantes (NF P 94 261) :

- Cas d'un terrain cohérent ($\phi = 0$):

$$i_{\beta} = \psi_1(\beta) = 1 - \frac{\beta}{\pi} \left(1 - \frac{d}{8B} \right)^2$$

- Cas d'un terrain frottant (c = 0):

$$i_{\beta} = \psi_2(\beta) = 1 - 0.9 \tan \beta (2 - \tan \beta) \left(1 - \frac{d + \frac{D_e}{\tan \beta}}{8B} \right)^2$$

- Cas d'un terrain de comportement intermédiaire :

$$i_{\beta} = \psi_2(\beta) + (\psi_1(\beta) - \psi_2(\beta)) \left(1 - \exp\left(-\frac{0.6c}{\gamma B \tan \phi}\right)\right)$$

Nota : Le choix d'un facteur réducteur pour terrain cohérent suppose implicitement la pérennité de la cohésion pour les combinaisons de chargement étudiées. Cette hypothèse est donc essentiellement destinée à la justification d'ouvrages pour des situations de calculs transitoires.

3.2.5.2. Cas d'un chargement incliné

On s'intéresse à présent au cas d'une fondation située à proximité d'un talus et soumise à un chargement incliné. Cela est traité en appliquant un facteur réducteur $i_{\delta\beta}$ sur la contrainte de rupture du terrain :

$$q_{net} = k_p p_{le}^* i_{\delta\beta}$$

Pour le calcul de $i_{\delta\beta}$, on distingue deux situations (voir figure suivante) :

- chargement dirigé vers l'extérieur du talus ($\delta > 0$): $i_{\delta\beta} = i_{\delta}i_{\beta}$
- chargement dirigé vers l'intérieur du talus $(\delta < 0)$: $i_{\delta\beta} = min\left(\frac{i_{\beta}}{i_{\delta}}, i_{\delta}\right)$

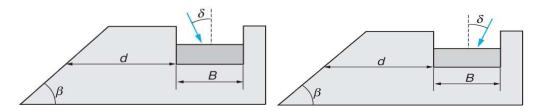


Figure 9 : Proximité d'un talus et charge inclinée – conventions de signe

3.3. Estimation de q_{net} à partir du pénétromètre statique (CPT)

3.3.1. Expression générale

Dans le cadre d'un dimensionnement à partir de l'essai pénétrométrique (CPT), la contrainte de rupture du terrain q_{net} s'exprime comme suit :

$$q_{net} = k_c q_{ce} i_{\delta} i_{\beta}$$

0ù:

- q_{ce} résistance du cône équivalente (voir §3.3.2) ;
- k_c facteur de portance pénétrométrique (voir §3.3.3);
- i_{δ} coefficient réducteur lié à l'inclinaison des charges (voir §3.3.4);
- i_B coefficient réducteur lié à la proximité d'un talus (voir §3.3.5).

3.3.2. Résistance de cône équivalente que

La résistance de cône équivalente est calculée comme la moyenne lissée des résistances de cône mesurées jusqu'à une profondeur H_r sous la base de la fondation :

$$q_{ce} = \frac{1}{H_r} \int_{D}^{D+H_r} q_{cc}(z) dz$$

Où $q_{cc}(z)$ désigne la résistance de cône q_c écrêtée à 1,3 q_{cm} (figure suivante) :

$$q_{cm} = \frac{1}{H_r} \int_D^{D+H_r} q_c(z) dz$$

La valeur de H_r dépend de la combinaison de chargement et est obtenue selon les modalités explicitées au paragraphe §3.2.2.

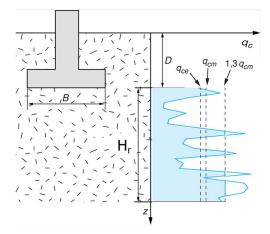


Figure 10 : Principe de calcul de la résistance de cône équivalente

3.3.3. Facteur de portance pénétrométrique kc

Le facteur de portance pénétrométrique s'exprime selon la formule :

$$k_c = k_c^1 \left(1 - \frac{B}{L} \right) + k_c^2 \frac{B}{L}$$

Avec k_c^1 et k_c^2 respectivement les facteurs de portance pour semelle filante et carrée dont les valeurs s'obtiennent analytiquement à l'aide de relation :

$$k_c^{1 \text{ ou } 2} = k_{c0} + \left[a + b \frac{D_e}{B} \right] \cdot \left[1 - \exp\left(-c \frac{D_e}{B} \right) \right]$$

Les valeurs de k_{c0} , a, b et c sont précisées dans le tableau suivant. La valeur de k_c est plafonnée à partir de $D_e/B=2,0$.

		а	b	С	k _{c0}
Arailas et limana	Semelle filante	0,07	0,007	1,3	0,27
Argiles et limons	Semelle carrée	0,10	0,007	1,5	0,27
Sables et graves	Semelle filante	0,04	0,006	2,0	0,09
	Semelle carrée	0,03	0,020	5,0	0,09
Craies	Semelle filante	0,04	0,030	3,0	0,11
Craies	Semelle carrée	0,05	0,040	3,0	0,11
Marnes et marno-	Semelle filante	0,04	0,030	3,0	0,11
calcaires Roches altérées	Semelle carrée	0,05	0,040	3,0	0,11

Figure 11: Paramètres pour le calcul du facteur de portance pénétrométrique

Le calcul du facteur de portance pénétrométrique k_c nécessite d'évaluer au préalable la profondeur d'encastrement équivalente de la fondation calculée à l'aide de la relation :

$$D_{e} = Min \left[D; \frac{1}{q_{ce}} \int_{0}^{D} q_{cc}^{*}(z) dz \right]$$

Avec q_{ce} calculée ici pour $H_r = 1.5$ B.

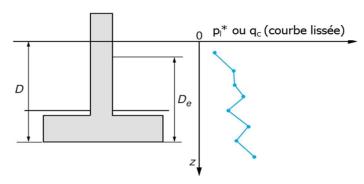


Figure 12 : notion de profondeur d'encastrement équivalente

3.3.4. Prise en compte de l'inclinaison du chargement is

La prise en compte de l'inclinaison du chargement est traitée selon les modalités du §3.2.4.

3.3.5. Prise en compte de la proximité d'un talus

La prise en compte de la proximité d'un talus est traitée selon les modalités du §3.2.5.

3.4. Estimation de la contrainte de rupture à partir des propriétés de cisaillement du terrain

3.4.1. Calcul en conditions non drainées (contraintes totales)

La contrainte de rupture d'un terrain de comportement non-drainé est estimée selon l'expression générale suivante :

$$q_{net} = (\pi + 2)s_c i_c c_n$$

0ù

- c_u cohésion non drainée (valeur moyenne caractéristique)
- s_c facteur correcteur dépendant de la forme de la fondation
- i_c coefficient réducteur lié à l'inclinaison des charges.

La norme NF P 94 261 propose de retenir les expressions suivantes :

$$s_c = 1 + 0.2 \frac{B'}{L'}$$
 $i_c = 0.5 \left(1 + \sqrt{1 - \frac{H_d}{A'c_u}} \right)$

Avec H_d l'effort horizontal « résultant » :

$$H_{d} = \sqrt{H_{B,d}^2 + H_{L,d}^2}$$

3.4.2. Calcul en conditions drainées (contraintes effectives)

Pour un terrain de comportement drainé, la contrainte de rupture (nette) q_{net} s'exprime comme suit :

$$q_{\rm net} = \frac{1}{2} \gamma' B N_{\gamma} s_{\gamma} i_{\gamma} + c' N_c s_c i_c + q_0' \big(N_q s_q i_q - 1 \big)$$

0ù:

- c' cohésion effective ;
- φ' angle de frottement effectif;
- γ' poids volumique déjaugé ;
- N_q , N_c et N_γ facteurs de portance adimensionnels ;
- s_o, s_c et s_y facteurs correcteurs liés à la forme de la fondation;
- iq, ic et iy coefficients réducteurs liés à l'inclinaison du chargement.

La norme NF P 94-261 propose de retenir les expressions suivantes :

- pour les facteurs de portance :

$$N_q = \exp{(\pi.\tan\!\phi')}.\tan^2\!\left(\frac{\pi}{4} + \frac{\phi'}{2}\right) \qquad N_c = \frac{N_q-1}{\tan\!\phi'} \qquad \quad N_\gamma = 2\big(N_q-1\big)\tan\phi'$$

- pour les facteurs de forme :

$$s_q = 1 + \frac{B'}{L'} sin\phi' \qquad s_\gamma = 1 - 0.3 \frac{B'}{L'} \qquad s_c = \frac{\left(1 + \frac{B'}{L'} sin\phi'\right) N_q - 1}{N_q - 1}$$

pour les coefficients réducteurs liés à l'inclinaison :

$$i_{q} = \left(1 - \frac{H_{d}}{V_{d} + A'c'/tan\phi'}\right)^{m} \quad i_{\gamma} = \left(1 - \frac{H_{d}}{V_{d} + A'c'/tan\phi'}\right)^{m+1} \quad i_{c} = i_{q} - \frac{1 - i_{q}}{N_{c}tan\phi'}$$

Avec:

$$m = \left[\frac{2 + L'/B'}{1 + L'/B'}\right] \frac{H_{L,d}^2}{H_d^2} + \left[\frac{2 + B'/L'}{1 + B/L'}\right] \frac{H_{B,d}^2}{H_d^2} \qquad \qquad H_d = \sqrt{H_{B,d}^2 + H_{L,d}^2}$$

3.4.3. Prise en compte de la proximité d'un talus

La prise en compte de la proximité d'un talus est traitée selon les modalités du §3.2.5. La règle du « cumul » entre les effets d'inclinaison et de talus s'applique sur les trois coefficients réducteurs i_q , i_c et i_γ .

4. Contrôle de l'excentrement

En plus de la vérification de capacité portante, la justification d'une fondation superficielle au sens de la norme NF P 94 261 doit assurer une compression du sol d'assise sur au moins :

- 100% de l'aire d'assise totale à l'ELS permanent ;
- 75% de l'aire d'assise totale à l'ELS caractéristique;
- 10% de l'aire d'assise totale à l'ELU (fondamental, accidentel et sismique).

Ces seuils peuvent être traduits mathématiquement en critères d'excentrement maximal selon les formules du tableau suivant (NF P 94 261) :

Tableau 2 : Critère de vérification de l'excentrement des charges

Aire comprimée Aire d'assise	Fondation filante de largeur B	Fondation circulaire de diamètre B	Fondation rectangulaire de section B x L
= 100%	$(1-2e/B) \ge 2/3$	$(1-2e/B) \ge 3/4$	$(1-2e_B/B).(1-2e_L/L) \ge 2/3$
≥ 75%	$(1-2e/B) \ge 1/2$	$(1-2e/B) \ge 9/16$	$(1-2e_B/B).(1-2e_L/L) \ge 1/2$
≥ 10%	$(1-2e/B) \ge 1/15$	$(1-2e/B) \ge 3/40$	$(1-2e_B/B).(1-2e_L/L) \ge 1/15$

5. Stabilité au glissement

5.1. Formalisme de vérification

La stabilité au glissement d'une fondation superficielle est vérifiée selon le formalisme suivant :

$$H_d \, \leq \, R_{h,d} \ \, \text{avec} \, \, H_d = \sqrt{H_{B,d}^2 + H_{L,d}^2} \label{eq:hd}$$

Où $R_{h,d}$ est l'effort résistant horizontal qui dépend des propriétés du contact « sol-fondation » (voir §5.2 et §5.3). A noter que FONDSUP néglige implicitement la contribution résistante de la butée des terrains situés au-dessus de la base de la fondation.

5.2. Cas d'un contact adhérant

La valeur de $R_{h,d}$ pour un contact adhérant s'exprime comme suit :

$$R_{h,d} = \min\left(\frac{A'c_{u,k}}{F_{s,h}}; 0.4V_d\right)$$

Avec:

- V_d valeur de calcul de l'effort vertical;
- A' aire d'assise effective de la fondation :
- c_{u,k} cohésion non drainée (valeur caractéristique) à l'interface ;
- F_{s.h} facteur partiel combiné (voir §5.4).

5.3. Cas d'un contact frottant

La valeur de $R_{h,d}$ pour un contact frottant s'exprime comme suit :

$$R_{h,d} = \frac{tan\delta_k V_d}{F_{s,h}}$$

Avec:

- V_d valeur de calcul de l'effort vertical ;
- δ_k angle de rugosité (valeur caractéristique) à l'interface ;
- F_{s.h} facteur partiel combiné (voir §5.4).

Nota : dans la pratique, $\delta_k = \phi_k$ pour une fondation en béton coulé en place et $\delta_k = 2/3\phi_k$ pour une fondation en béton préfabriqué.

5.4. Facteur partiel combiné F_{s,h}

La norme NF P 94-261 propose les valeurs suivantes :

- $F_{s,h} = 1,21$ pour les combinaisons ELU fondamentales
- $F_{s,h} = 1,10$ pour les combinaisons ELU accidentelles
- $F_{s,h} = 1,25$ pour les combinaisons ELU sismiques (EC8)

6. Estimation des tassements

6.1. A partir d'un modèle pressiométrique (PMT)

Dans le cadre du modèle pressiométrique, FONDSUP permet une estimation des tassements selon les recommandations de la méthode de calcul originellement proposée par Ménard et Rousseau (1962) et reprise dans la norme NF P 94 261. Dans le cadre de cette méthode, le tassement à 10 ans d'une fondation encastrée d'au moins une largeur B (pour une fondation posée près de la surface, il convient d'ajouter 20 %) est donné par la relation :

$$s_{10 \text{ ans}} = s_c + s_d$$

où:

- $s_c = (q \sigma_v)\lambda_c B\alpha/9E_c$ est le tassement volumique ;
- $s_d = 2(q \sigma_v)B_0(\lambda_d B/B_0)^{\alpha}/9E_d$ est le tassement déviatorique ;

avec:

- q contrainte verticale appliquée par la fondation;
- σ_v contrainte verticale totale avant travaux au niveau de la base de la fondation

$$\sigma_{\rm v} = ({\rm Z}_{\rm TN,0} - {\rm Z}_{\rm base}) \gamma_{\rm mov}$$
;

- λ_c coefficient de forme volumique, donné dans le Tableau 3;

- λ_d coefficient de forme déviatorique, donné dans le Tableau 3;
- α coefficient rhéologique, donné dans le Tableau 4;
- B largeur (ou diamètre) de la fondation;
- B₀ dimension de référence égale à 0,60 m;
- E_c module pressiométrique équivalent dans la zone volumique ;
- E_d module pressiométrique équivalent dans la zone déviatorique.

Tableau 3 : Coefficients de forme λ_c et λ_d

L/B	Cercle	Carré	2	3	5	20
λ_{c}	1,00	1,10	1,20	1,30	1,40	1,50
λ_{d}	1,00	1,12	1,53	1,78	2,14	2,65

Tableau 4 : Coefficient rhéologique α

Tomas	Argile		Limon		Sable		Grave		Roche	
Туре	$E_{\rm M}/p_{\rm l}$	α	$E_{\rm M}/p_{\rm l}$	α	$E_{ m M}/p_{ m l}$	α	$E_{\rm M}/p_{\rm l}$	α	Туре	α
Surconsolidé ou très serré	> 16	1	> 14	2/3	> 12	1/2	> 10	1/3	Très peu fracturé	2/3
Normalement consolidé ou normalement serré	9 à 16	2/3	8 à 14	1/2	7 à 12	1/3	6 à 10	1/4	Normal	1/2
Sous-consolidé	7 à 9	1/2	5 à 8	1/2	5 à 7	1/3			Très fracturé	1/3
altéré et remanié ou lâche	/ a 9	1/2	Jao	1/2	3 a / 1/3				Très altéré	2/3

Le calcul des modules E_c et E_d se fait de la manière suivante :

$$E_c = E_1$$
 et $\frac{1}{E_d} = \frac{0.25}{E_1} + \frac{0.30}{E_2} + \frac{0.25}{E_{3.5}} + \frac{0.10}{E_{6.8}} + \frac{0.10}{E_{9.16}}$

où

- E_i module pressiométrique mesuré dans la couche située entre (i-1)B/2 et iB/2;
- $E_{i,j}$ moyenne harmonique des modules E_i à E_i .

Par ailleurs, si les valeurs de 9B/2 à 16B/2 ne sont pas connues, mais sont supposées supérieures aux valeurs sus-jacentes, on calcule E_d de la manière suivante :

$$\frac{1}{E_{d}} = \frac{0.25}{E_{1}} + \frac{0.30}{E_{2}} + \frac{0.25}{E_{3.5}} + \frac{0.20}{E_{6.8}}$$

Il en est de même si les valeurs de 3B à 8B ne sont pas connues :

$$\frac{1}{E_d} = \frac{0,25}{E_1} + \frac{0,30}{E_2} + \frac{0,45}{E_{3,5}}$$

On attire l'attention sur le fait que le module pressiométrique E_M est un module déviatorique, particulièrement adapté au calcul du tassement des fondations pour lesquelles le champ de contrainte déviatorique est prépondérant, à savoir les fondations « étroites », telles les semelles

de bâtiments et d'ouvrages d'art (contrairement aux fondations de grandes dimensions au regard de la couche compressible, tels les remblais et les radiers).

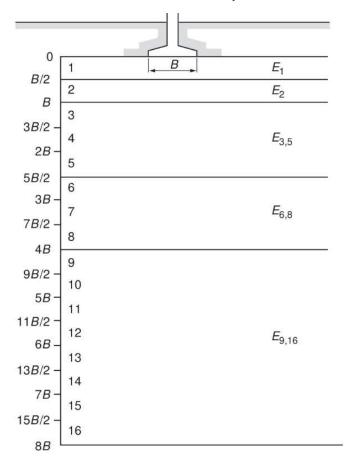


Figure 13: Modèle pressiométrique pour le calcul des tassements

Nota : dans le cas d'un coefficient rhéologique variant avec la profondeur, le modèle présenté précédemment est appliqué dans FONDSUP en considérant un coefficient rhéologique moyen calculé selon la formule suivante :

$$\alpha_{moy} = \int_{Z_{base}}^{Z_{base} + \Delta z} \alpha(z) dz \qquad \text{avec} \quad \Delta z = min \ (8B, D_{max})$$

 $Où D_{max}$ est la profondeur totale du modèle stratigraphique (comptée depuis la base de la semelle).

6.2. A partir d'un modèle pénétrométrique (CPT)

Pour les sables, une méthode pénétrométrique de calcul du tassement des fondations superficielles très utilisée est celle de Schmertmann (1970). Cette méthode, bien qu'elle soit présentée sous forme d'une corrélation entre le module d'Young équivalent du sol E et la résistance de cône q_c, suppose une distribution bien définie de la déformation verticale du sol sous la fondation et s'apparente en fait à une méthode directe, qu'il faut utiliser « en bloc », c'est-à-dire comme un tout indissociable.

La norme NF P 94 261 présente une formulation de ce modèle basée selon l'expression mathématique suivante :

$$s = C_1 C_2 (q - {\sigma'}_v) \int_0^{z_I} \frac{I_z}{C_3 E} dz$$

avec:

$$C_1 = 1 - 0.5 \frac{\sigma'_v}{q - \sigma'_v}$$
 et $C_2 = 1.2 + 0.2 \log(t)$

Où:

- q contrainte verticale appliquée par la fondation ;
- σ'_v contrainte verticale effective avant travaux au niveau de la base de la fondation ;
- t durée d'application du chargement en années (dans FONDSUP, t = 10 ans);
- I_z facteur d'influence de la déformation verticale en profondeur (Figure 14);
- C₃ facteur de forme des fondations superficielles (NF P 94 261):
 - o $C_3 = 1,25$ pour semelle circulaire ou carrée (L = B);
 - o $C_3 = 1,75$ pour semelle filante (L > 10 B).
- E module de déformation empirique (exclusivement pour la présente formule) :
 - o $E = 2.5 q_c$ pour semelle circulaire ou carrée (L = B);
 - o $E = 3.5 q_c$ pour semelle filante (L > 10 B).
- z_I profondeur d'influence sous la fondation
 - o $z_I = 2 B$ pour semelle circulaire ou carrée (L = B);
 - o $z_I = 4 B$ pour semelle filante (L > 10 B);

La Figure 14 donne, pour les fondations à symétrie de révolution (semelles circulaires et carrées, par extension), ainsi que pour les fondations à déformation plane (semelles filantes), la distribution du facteur d'influence de la déformation verticale I_z utilisée dans FONDSUP.

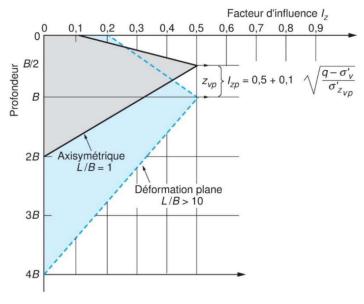


Figure 14: Facteur d'influence de la déformation verticale

Nota : Dans le cadre de cette méthode, I_{zp} (valeur maximale de I_z) dépend de la contrainte nette appliquée par la fondation. Le tassement qui en résulte varie de façon non-linéaire avec la contrainte (nette) appliquée (contrairement au modèle de Ménard). Par ailleurs, l'utilisation de ce modèle pour des terrains argileux conduit à des résultats exagérément pessimistes.

6.3. A partir d'un modèle élastique (solutions analytiques)

Le tassement s d'une fondation de forme circulaire, carrée ou rectangulaire, infiniment rigide (tassement uniforme), posée sur un massif semi-infini élastique linéaire et isotrope prend la forme générale suivante :

$$s = (q - \sigma_v) \frac{B(1 - \nu^2)}{E} c_f$$

avec:

q contrainte appliquée sur la fondation (uniforme ou moyenne);

 σ_v contrainte verticale totale avant travaux au niveau de la base de la fondation;

E et v module d'Young et coefficient de Poisson du massif de sol;

B largeur ou diamètre de la fondation ;

c_f coefficient dépendant de la forme de la fondation, de sa rigidité et de la position du point considéré.

Cette approche peut être utilisée pour estimer :

- le tassement immédiat sur sols fins saturés. E et ν sont alors les « propriétés élastiques » en conditions non drainées E_u et ν_u , avec $\nu_u = 0.5$;
- le tassement final à long terme. E et ν sont alors les « propriétés élastiques » en conditions drainées E' et ν' , avec $\nu' = 0.25$ à 0.35.

Lorsque des mesures pressiométriques sont disponibles, à défaut d'utiliser le modèle de Ménard présenté en §6.1, les valeurs suivantes peuvent être recommandées pour le module de déformation E' (NF P 94-261) :

		Rapport E /E _M
Arailaa	Normalement consolidées	4,5
Argiles	Surconsolidées	3
Limons	Normalement consolidées	4,5
Limons	Surconsolidées	3
Sables	Lâches	4,5
Sables	Denses	3
Graves	Lâches	6
Graves	Serrés	4,5
I		

Tableau 5 : Choix du module de déformation à partir du pressiomètre (semelles rigides)

Le tableau suivant donne quelques valeurs de c_f pour les cas de fondations rigides tirées des tables de Giroud (1972).

L/B	Circulaire	1	2	3	4	5	6	7	8	9	10	15	20
Cf	0,79	0,88	1,20	1,43	1,59	1,72	1,83	1,92	2,00	2,07	2,13	2,37	2,54

Tableau 6 : Valeurs du coefficient cf en fonction de L/B

A noter que pour une fondation rigide soumise à une contrainte q, le tassement est uniforme et la réaction du sol ne l'est pas (Figure 15a) : elle est égale à q/2 en partie centrale et tend vers l'infini au bord de la fondation (effet de bord). Dans la réalité, il y a plafonnement de cet effet bord par déformation plastique du sol. Pour une fondation souple soumise à une contrainte q, la réaction du sol est uniforme et égale à q (Figure 15b) et le tassement n'est pas uniforme : il est en forme de cuvette, maximal au centre et minimal au bord.

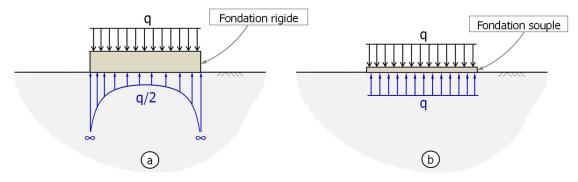


Figure 15: Distribution des contraintes sous une fondation rigide ou souple (Frank et al. 2018)

7. Estimation des raideurs équivalentes

7.1. Principe

Dans la pratique des analyses d'interaction sol-structure, la réponse d'une fondation superficielle isolée est usuellement représentée (dans le modèle structure) par un ressort équivalent comportant un ou plusieurs degrés de liberté. Les règles de dimensionnement des fondations superficielles (avec notamment un niveau de sécurité de l'ordre de 2 à 3 entre la charge de service et la charge de rupture) justifient le caractère élastique dudit ressort.

FONDSUP permet d'estimer les composantes translationnelles (verticale et horizontales) et rotationnelles de ce ressort selon les conventions de la figure suivante.

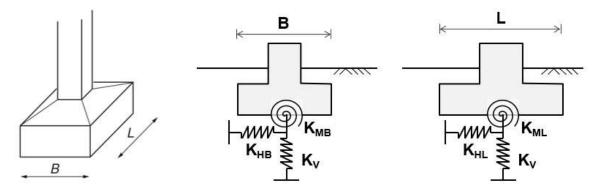


Figure 16: Raideurs équivalentes pour une fondation isolée

La raideur verticale K_V représente le rapport entre la charge verticale (nette) appliquée et le tassement qui en résulte. Les raideurs horizontales K_{HB} et K_{HL} représentent les rapports entre les charges horizontales H_B et H_L et les déplacements horizontaux qui en résultent, respectivement

selon B et L. Les raideurs rotationnelles K_{MB} et K_{ML} correspondent aux rapports entre les moments de renversement M_B et M_L et les rotations qui en résultent, respectivement selon B (autour de L) et L (autour de B).

7.2. Calcul de la raideur verticale

7.2.1. A partir du modèle pressiométrique (PMT)

La raideur verticale K_V , sous chargement ELS-QP, peut être estimée à partir du modèle de Ménard (§6.1) selon l'expression générale suivante (avec les notations du §6.1) :

$$K_V = 9 \frac{A}{\frac{\lambda_c B \alpha}{E_c} + 2 \frac{B_0}{E_d} \left(\frac{\lambda_d B}{B_0}\right)^{\alpha}}$$

Où A est (pour mémoire) l'aire d'assise de la fondation.

7.2.2. A partir du modèle pénétrométrique (CPT)

La raideur verticale K_V , sous chargement ELS QP, peut être estimée à partir du modèle de Schmertmann (§6.2), appliqué pour une charge égale à la capacité portante ELS. Soit, en reprenant les notations du §6.2 :

$$K_V = \frac{A}{C_1 C_2 \int_0^{z_1} \frac{I_z}{C_2 E} dz}$$

Où A est (pour mémoire) l'aire d'assise de la fondation. Il est à noter que C_1 et I_z sont fonction de la contrainte appliquée q, qui est ici prise égale à :

$$q = q_{ELS} = \frac{k_c q_{ce}}{F_s}$$

Où k_c est le facteur de portance pénétrométrique de la fondation (obtenu selon §3.3.3), q_{ce} la résistance au cône équivalente (obtenue selon §3.3.2) et $F_s = 2,76$ (ELS QP).

7.2.3. A partir des propriétés de cisaillement (modèle élastique)

La raideur verticale K_V est estimée analytiquement à partir de l'expression suivante (déduite du modèle analytique présente en §6.3) :

$$K_V = \frac{A}{B(1 - v^2)c_f} E$$

Où A est (pour mémoire) l'aire d'assise de la fondation. Les autres paramètres sont obtenus selon les modalités du §6.3.

7.3. Estimation des raideurs horizontales et rotationnelles

Les raideurs horizontales et rotationnelles sont déduites de la raideur verticale calculée précédemment à partir des solutions analytiques de Gazetas (1991) rappelées ci-après :

$$\begin{split} K_{HB} &= 0.4 \frac{2 + 2.5 \left(\frac{B}{L}\right)^{0.85}}{0.73 + 1.54 \left(\frac{B}{L}\right)^{0.75}} \, K_{V} \\ K_{MB} &= \frac{B^{3}}{8L} \frac{0.4 + 3.2 \left(\frac{L}{B}\right)^{0.75}}{0.73 + 1.54 \left(\frac{B}{L}\right)^{0.75}} \, K_{V} \\ \end{split} \qquad K_{ML} &= \frac{B^{3}}{8L} \frac{3.6 \left(\frac{L}{B}\right)^{0.75}}{0.73 + 1.54 \left(\frac{B}{L}\right)^{0.75}} \, K_{V} \\ \end{split}$$

Nota : ces expressions supposent implicitement un comportement élastique du terrain et un faible contraste de rigidités entre les différentes couches qui le constituent. Elles sont valables en l'absence de glissement (pour K_{HB} et K_{HL}) et de décollement (pour K_{MB} et K_{ML}). Elles ont par ailleurs été établies pour un coefficient de Poisson de 0,33.

7.4. Estimations complémentaires

Les raideurs calculées en §7.2 et §7.3 sont supposées représenter le comportement de la fondation sous chargement de longue durée.

A titre indicatif, FONDSUP fournit une estimation des raideurs sous des charges de « courte durée » et « sismique » en appliquant les corrélations usuelles suivantes :

- $K_{CT} = 2 K_{LT}$
- K_{SISM} = 3 à 6 K_{LT} (selon intensité du séisme)

Où K_{LT} , K_{CT} et K_{SISM} désignent les raideurs de la fondation respectivement sous un chargement de « long durée », de « courte durée » et « sismique ».

8. Vérification additionnelle de la portance sismique d'une fondation selon l'EC8-5

8.1. Formulation

FONDSUP propose de vérifier, au titre d'une analyse complémentaire, la portance sismique de la fondation selon l'inégalité de l'annexe F de l'Eurocode 8 – Partie 5 :

$$\frac{(1-e\bar{F})^{c_T}(\beta\bar{H})^{c_T}}{\bar{V}^a[(1-m\bar{F}^k)^{k\prime}-\bar{V}]^b} + \frac{(1-f\bar{F})^{c\prime_M}(\gamma\bar{M})^{c_M}}{\bar{V}^c[(1-m\bar{F}^k)^{k\prime}-\bar{V}]^d} \leq 1$$

Avec:

$$\bar{V} = \gamma_{Rd} \frac{V_d}{V_{max}} \hspace{0.5cm} \bar{H} = \gamma_{Rd} \frac{H_d}{V_{max}} \hspace{0.5cm} \bar{M} = \gamma_{Rd} \frac{M_{B,d}}{BV_{max}} \hspace{0.5cm} \bar{F} = \frac{a_N}{a_{dsb}}$$

0ù:

- V_{max} effort résistant maximal du terrain sous chargement vertical centré (voir ci-après);
- V_d valeur de calcul de la charge verticale sous séisme ;

- H_d valeur de calcul de la charge horizontale (résultante) sous séisme ;
- M_{B,d} valeur de calcul du moment de renversement (selon B) sous séisme ;
- γ_{Rd} facteur modèle fonction du type de terrain (Tableau 7);
- a_N accélération nominale du site (voir §8.2);
- a_{dsb} accélération déstabilisante du terrain (voir ci-après).

Les paramètres a, b, c, d, e, f, k, k', m, c_T , c_M , c'_M , β et γ dépendent de la nature frottante ou cohérente du sol de fondation. Ils sont donnés dans le tableau suivant :

	Sol purement cohérent	Sol purement frottant
а	0,70	0,92
b	1,29	1,25
С	2,14	0,92
d	1,81	1,25
е	0,21	0,41
f	0,44	0,32
m	0,21	0,96
k	1,22	1,00
k'	1,00	0,39
c _T	2,00	1,14
c _M	2,00	1,01
c' _M	1,00	1,01
β	2,57	2,90
γ	1,85	2,80

Figure 17 : paramètres numériques utilisés dans le modèle de l'EC8-5

La valeur de V_{max} est obtenue selon le modèle de calcul choisi par l'utilisateur (PMT, CPT ou c- φ) pour $\delta = 0$ et $e_B = e_L = 0$ (par construction) et F_s est la facteur partiel combiné pour le calcul de portance sous combinaisons ELU SISMIQUE (voir §3.1.2). La valeur de F_s dépend du modèle de calcul utilisé.

L'intérêt de ce modèle réside dans sa capacité à rendre compte des effets des forces d'inertie qui se développent dans le terrain de fondation (et qui sont susceptibles d'en réduire la résistance, notamment pour un comportement frottant). Ces effets sont représentés par la grandeur \bar{F} appelée force d'inertie adimensionnelle du sol.

L'accélération déstabilisante a_{dsb} est prise égale à :

- $a_{dsb} = g$. tan ϕ pour un terrain de comportement frottant (contraintes effectives);
- $a_{dsb} = c_u/(\gamma B)$ pour un terrain de comportement cohérent (contraintes totales).

Le facteur modèle γ_{Rd} est à déterminer selon les indications du tableau suivant :

Sable loyennement ense à dense	Sable lâche sec	Sable lâche saturé	Argile non sensible	Argile sensible
1,00	1,15	1,50	1,00	1,15

Tableau 7 : Valeurs recommandées pour le facteur modèle γ_{Rd}

8.2. Choix de l'accélération nominale an

L'accélération nominale du site peut être estimée selon le formalisme conventionnel de l'Eurocode 8 :

$$a_N = \gamma_I. a_{gr}. S$$

0ù

- γ_I facteur d'importance dépendant de la catégorie de l'ouvrage porté ;
- a_{gr} accélération de référence au Rocher (selon la zone de sismicité du site) ;
- S facteur d'amplification entre le rocher et le TN (selon la classe de sol).

Les valeurs de γ_{I} , a_{gR} et S sont indiquées dans le tableau suivant :

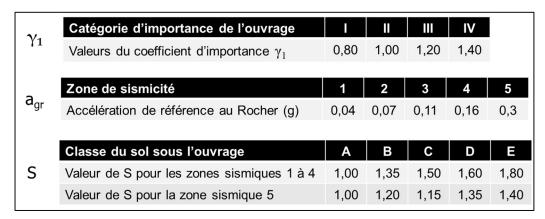


Tableau 8 : Valeurs numériques des grandeurs intervenant dans le calcul de an